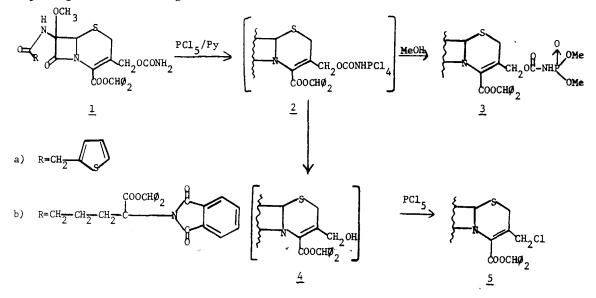
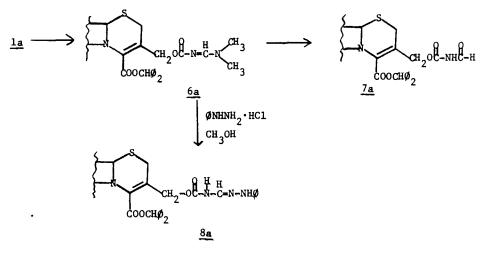
Tetrahedron Letters No. 28, pp 2401 - 2404, 1976. Pergamon Press. Printed in Great Britain.

THE CHEMISTRY OF CEPHAMYCINS. V. THE REACTIONS OF THE CARBAMOYL GROUP

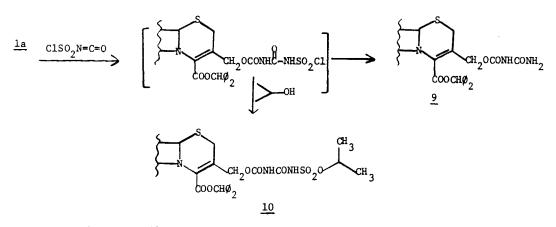

S. Karady*, L. M. Weinstock, F. E. Roberts, J. ten Broeke, R. F. Shuman, A. M. Hoinowski, S. H. Pines, and M. Sletzinger

> Merck Sharp & Dohme Research Laboratories, Division of MERCK & CO., Inc. Rahway, New Jersey 07065

(Received in USA 16 January 1976; received in UK for publication 7 June 1976)

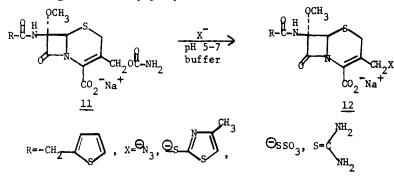

The chemistry of cephamycins has been the subject of recent communications from these laboratories^{1,2}. Continuing our efforts to describe the reactivity of this system, we report on the reaction of Δ^3 carbamoyloxy function with electrophiles and nucleophiles. Reaction with Electrophiles

In an earlier paper¹, we have shown that the 7-amido nitrogen of cephamycins (<u>la</u>) can be selectively acylated with acid chlorides in the presence of a neutral acid scavenger, without involvement of the carbamoyloxy group. In contrast to this, here we report that PCl_5 , (Me₂NCHCl)Cl and CLSO₂NCO attack the urethane nitrogen selectively.



Thus, protected cephamycin C <u>lb</u> reacted with PCl₅ and pyridine (in CH_2Cl_2 at 0° for 2 hrs), followed by methanol, to afford <u>3b</u>³ nmr⁴ δ : 3.5 (s, C₇-OCH₃), 3.7 (d, <u>P</u>-OCH₃, $J_{\underline{P}-OCH_3} = 7$ Hz) 4.7 (br.s. CH_2OCO) 5.02 (s, C₆-H), in 25% isolated yield. A minor product (6% yield) was identified as the 10-chloro derivative <u>5b</u>, nmr: δ 3.42 (s, C₇OCH₃), 4.32 (s, CH₂Cl), 5.03 (s, C₆-H). This formed presumably by the elimination of a phosphonyl isocyanate from <u>2b</u> and further reaction of <u>4</u> with PCl₅.

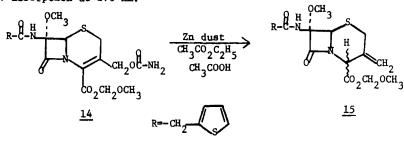
Vilsmeyer reagent derived from DMF and $SOCl_2$ reacted smoothly with the carbamoyloxy function (in THF at 0° for 1 hr) to afford amidine <u>6a</u> in nearly quantitative yield, nmr: δ 3.0 (CH₃)₂N, 3.6 (CH₂-CON), 5.0 (CH₂-OCO) and 5.05 (C₆-H). This reaction can be used for the reversible protection of the urethane group, since reaction with hydrazine dihydrochloride in methanol (r.t. 48 hr) yielded the starting <u>1a</u> in high yield. The overall yield of <u>1a+6a+1a</u> was about 75%.


Amidine <u>6a</u> is a versatile intermediate which can be converted to formyl derivative <u>7a</u>; nmr δ 8.8 (d, J = 8 Hz, C-H), by treatment with 4 equivalents of trifluoroacetic acid in THF for 4 hrs at room temperature. Furthermore, the dimethylamino group can be replaced with phenylhydrazine (CH₃OH, r.t. 4 hrs) to afford <u>8a</u>. Another electrophilic reagent, chlorosulfonyl isocyanate, selectively attacked the carbamoyl nitrogen. The initial adduct was converted to allophanate <u>9a</u> [nmr: δ 5.0 (q. J_{AB} = 10 Hz, CH₂-OCO) correct C, H, N and S] with KI in acetone at 0°, and to <u>10a</u> [nmr δ 1.35 (d, J = 6 Hz (CH₃)₂CHO-) and 2.4 (d, J = 6 Hz, CH-O)] with isopropanol and collidine (0° for 30 min).

Reaction with Nucleophiles

Abraham, Newton and Hale⁵ first reported the displacement of the acetoxy group in cephalosporin C. A study of this replacement by "soft" nucleophiles (e.g. \Im_{N_3} , $-\Im_{SR}$, thiourea, etc.) was reported in an elegant paper by Cocker and co-workers⁶, wherein strong evidence was presented for an SN₁ type displacement.

We have found that the C-10 carbamoyloxy group in cefoxitin <u>la</u> is also replaced in a related process. To our knowledge this is the first instance of alkyl oxygen cleavage in carbamate solvolysis. The method is useful for the preparation of various 10-substituted cephalosporins containing a 7α -methoxy group.



In general, the reaction is carried out by heating at 90° for eight minutes (or two days at 45°) a pH 5-7 aqueous solution (0.5M in PO_4^{-}) of cefoxitin containing a ten-fold molar excess of nucleophile. The compounds (12) were purified by preparative thick layer chromatography. [X=N₃, ir (CHCl₃) 2120 (γ N₃), 1780 (γ C=0), 1720 (γ C=0), 1690 (γ C=0) cm⁻¹; nmr (CDCl₃) 6 3.2-3.6 (s and m, OCH₃, S-CH₂) 3.9-4.4 (m, C₁₀H₂), 5.08 (s, C₆H). When X=-2---

mercapto-4-methylthiazole nmr $(CD_3)_2CO \delta 2.3$ (s, CH_3 -thiazole ring), 3.4 (s, OCH_3), 4.2-4.7 (m, $C_{10}H_2$), 5.08 (s, C_6H). Mass spectrum (as methyl ester) M⁺ 512.]

The yields are in the range of 20-30% because of the concommitant cleavage of the β -lactam.

The carbamoyloxy group was removed reductively, the product depending on conditions. The carbamoyloxy group of <u>11</u> was removed by hydrogenation over 5% Pd/C in aqueous solution at pH 7 producing the 3-methyl analog <u>12</u> $(X=H)^7$, whereas novel reaction of the carbamoyloxy group was observed when the cefoxitin methoxymethyl ester <u>14</u> was treated with zinc dust to give the exomethylene compound⁸ <u>15</u> identified by its characteristic nmr spectrum [(CDCl₃) δ 3.5 (s, OCH₃), 3.9 (s, -CH₂C-), 5.2-5.6 (s and m, C₆H and =C_H^H)] mass spectrum (M⁺ 412) and its lack of UV adsorption at 270 nm.

References

- S. Karady, S. H. Pines, L. M. Weinstock, F. E. Roberts, G. S. Brenner, A. M. Hoinowski, T. Y. Cheng and M. Sletzinger, J. Amer. Chem. Soc., <u>94</u>, 1410 (1972).
- 2. S. Karady, T. Y. Cheng, S. H. Pines and M. Sletzinger, Tet. Letters, 2625, 2629 (1974).
- 3. This finding is contrary to German Patent 235 1375, October 12, 1973, of E. Lilly Co., where imidoyl chloride was claimed without reaction of the urethano nitrogen.
- 4. Only diagnostic peaks are given. All spectra were in deuterochloroform.
- 5. C. N. Hale, G. G. Newton and E. P. Abraham, Biochem. J., 78, 403 (1961).
- J. D. Cocker, B. R. Cowley, J. S. G. Cox, S. Eardley, G. I. Gregory, J. K. Lazenby,
 A. G. Long, J. C. P. Sly and G. A. Somerfield, J. Chem. Soc., 5015 (1955).
- 7. The methyl compound was first prepared by Dr. S. Pines from these laboratories.
- 8. M. Ochiai, et al., Tet. Let., 2341-4 (1972).